224=-16t^2+16t+320

Simple and best practice solution for 224=-16t^2+16t+320 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 224=-16t^2+16t+320 equation:



224=-16t^2+16t+320
We move all terms to the left:
224-(-16t^2+16t+320)=0
We get rid of parentheses
16t^2-16t-320+224=0
We add all the numbers together, and all the variables
16t^2-16t-96=0
a = 16; b = -16; c = -96;
Δ = b2-4ac
Δ = -162-4·16·(-96)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{6400}=80$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-80}{2*16}=\frac{-64}{32} =-2 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+80}{2*16}=\frac{96}{32} =3 $

See similar equations:

| 2k-11=15 | | X-4=-2x-20 | | (x-8)(2x-10)=0 | | (x+4)2-8=56 | | s-41=34 | | 30x2‐87x+30=0 | | x3=80 | | j+13=88 | | 5(4x-3)=-175 | | n=7-50/4 | | 5v=33.5 | | 3=(q+4/3)=2 | | 8j+2j=24 | | 3=23(q+4/3)=2 | | y+y+10=31 | | 5(4−y)=25 | | 100(1.5)^x=200 | | y=1200(1+0.07)^12 | | -180=9(10+x | | y=2200(1+0.0625)^8 | | 7x÷8=78 | | -⅗x=x+16 | | (5x+1)(4x-2)=2x+14 | | (2x+14)(4x-2)=5x+1 | | (2x+14)+(4x-2)=5x+1 | | (x-4)+10=13 | | 6x÷2=-118 | | 7(7+k)=84 | | 5x+7-3+2x=4(7x-1) | | x+4+10=13 | | (5x+1)+(4x-2)=2x+14 | | y=9300(1+0.04)^2 |

Equations solver categories